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Abstract—This puper deals with the electromagneto-elustic problem of a fixed ended conducting
plate of finite width with a through crack under a uniform electric current flow and a constant
magnetic field. The study is based on Mindlin’s theory of plate bending. The current flow is disturbed
by the presence of the cruck and the twisting moment is caused by the interaction between the
magnetic field and the disturbed current. Fourier transforms are used to reduce the electromagneto—
elastic problem to one involving the numerical solution of i system of simultuneous Fredholm
integral equations. The problem concerning the clectric current density field is also solved and
reduced to a Fredholm integral equation of the second kind. The singulur character and the detailed
structure of the electric current densities and the stresses neir the ends of the crack are determined
in closed forms. Numerical results are given for the twisting moment intensity factor and the shear
force intensity factor for several values of the geometrical parameters.

INTRODUCTION

Cracks in conducting materials under electromagnetic loading are a major problem in the
structural design of the superconducting devices. By design, the components of the super-
conducting structures are most often used in environments with large ¢lectric currents and
strong magnetic ficlds. Therefore, a better understanding of cracks under clectromagnetic
loading conditions is needed to guide the structural design and integrity assessment of the
supcrconducting structures. The stress intensity factor approach of lincar elastic fracture
mechanics has proved to be very successful in predicting the unstable fracture of brittle
solids (Murakami, 1986). When cracked conducting materials are subjected to electric
current flows and magnetic ficlds, the sume approach is expected to upply. Considerable
work has been done to determine the stress field around a finite crack in an elastic conducting
strip under & uniform electric current flow and a constant magnetic field (Shindo and
Takeuchi, 1988). The crack disturbs the current flow and anti-plane shear stresses are
caused by the interaction between the magnetic field and the disturbed current.

The present paper presents an investigation of the stress distribution in a conducting
flat plate of finite width containing a finite crack when the plate is subjected to an electric
current flow and a magnetie field. The current flow and the magnetic field are uniform and
perpendicular to the crack surfuce, and the crack and the plate surfaces are electrically
insulated. The study is based on Mindlin’s theory for the flexural motion of plates in which
the three physical boundary conditions of vanishing bending moment, twisting moment,
and transverse shear foree can be satisfied individually at the crack edge (Mindlin, 1951,
Embley and Sih, 1973). First, application of the Fourier transform reduces the problem of
the electric current density field to the solution of a pair of dual integral equations (Shindo
and Takeuchi, 1988 Sneddon, 1951), These equations are solved by using an integral
transform technique and the result is expressed in terms of a Fredholm integral equation
of the second kind. Next, the efectromagnceto-clastic field is treated. The interaction between
the magnetic ficld and the disturbed clectric current gives risc to an electromagnetic twisting
moment to the cracked conducting plate. A solution of the crack problem is obtained by
the method of dual integral equations and the result is expressed in terms of a system of
simultancous Fredholm integral equations. The singular parts of the current densities,
moments and shear forces are determined in closed elementary forms. Numerical solutions
arc obtained for the twisting moment intensity factor and the shear force intensity factor,
and are displayed graphically as the geometrical parameters are varied.
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STATEMENT OF THE PROBLEM AND ELECTRIC CURRENT ANALYSIS

We consider an electrically conducting elastic plate of thickness 2/ and width 2/ with
fixed ends containing a through crack of length 2q. The coordinate axes x and 1 are in the
middle plane of the plate. the z-axis is perpendicular to this plane. and the center of the
crack is taken as the origin O, as shown in Fig. |. The cracked conducting plate is permeated
by a static uniform magnetic field of magnetic induction B, normal to the crack surface. A
steady electric current flow passes through the plate. and is uniform and perpendicular to
the crack surface. The 1 component of the undisturbed electric current density vector J, is

Jo = J. (h
where J, is a constant with the dimension of current density. The current flow is disturbed
by the presence of the crack and the twisting moment is caused by the interaction between

the magnetic field and the disturbed current.
The electric potential @ (x, v) is

J.
O, (x. y) = — j y+o(x 1), (2)

where a is the clectric conductivity. The disturbed electric potential function ¢, (v, 3) s
governed by the following Laplace equation :

PeniFPe e = 0. 3)

The nontrivial components of the electric current density vector J are

Jo= —U(Dc.x —O0P.\s

—o0, , = J.~0op.,. 4)

where J, . J, ure the v, p components of J and a comma denotes partial ditferentiation with
respect to the coordinate,

The problem is solved for the case of electrically insulated crack and plate surfaces.
The clectric current density at the ends y = +/is assumed to be J, = J.. Because of the
assumed symmetry, it is suflicient to consider the problem for0 € x < %, 0 € y </ only.
Theretore the electric boundary conditions are given as:

Py = /o (,V =0, 0 x<u),

0. =0 (y=0, ugx<aw), (3)

Fig. 1. A conducting plate with a through crack.
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@ey =0 (y=1 0<x<x). (6)
A Fourier transform is applied to eqn (3) and the result is

<~

¢ =

- J; {A,(s) exp (—s¥) + A,(s) exp (sy)] cos (sx) ds. N

where 4 ,(s) and A,(s) are the unknown functions to be determined later. The boundary
conditions (6) lead to the following relation between unknown functions:

A:(s) = exp(=2s0)A,(s). (8)

Making use of the mixed boundary conditions (5), we have a pair of dualintegral equations :

* J
j sA (s)sinh (syexp(—sl)cos(sx)ds = — Z(; 0<x<a).
0
J‘ - Aisycosh(sNexp(—sHcos{sx)ds =0 (¢ € x < x). (9
1)

The solution of the dual integral equations (9) may be obtained by using a new function
2(C) (Shindo and Takcuchi, 1988) and the result is

n.a® exp (s

A = = 4a cosh (s/)

[}
I CVE) S (sal) JL. (10)

where J4( ) s the zero-order Bessel function of the first kind and /() is the solution to the
following Fredholm integral equation of the second kind

1
/I(C)+J hm Ko (Con) dyp = '3, (1)

whose kernel being symmetric in { and n is

£

Ku(Com = (Em'? J:) ¢ {tanh (tl/a) = 1} Jo(e0)J (1) dt. (12)

The singular parts of the current densitics in the neighborhood of the cruck tip arce
obtained as

1,2

J, h(1)sin (0,/2).

o4
(2"|)| :
12
Ju

2r)'

J, ~ (1) cos (0,/2). (13)

where r, and 0, arc the polar coordinates defined as:

ro= {(.\'—(1)2-{-}'2}”:,

0, =tan"< L4 ) (14)
X—a
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ELECTROMAGNETO-ELASTIC ANALYSIS

The electric current density J, and the magnetic induction B, in the v direction induce
the electromagnetic body force B,J/, in the - direction and the twisting moment operates
the cracked plate. The electromagnetic twisting of a conducting plate with a through crack
using the Mindlin’s theory (Mindlin. 1951) is considered. In this theory. the rectangular
components of the displacement vector are given by

u, = ,\'3¢,(.Y|.x2).

uy = ¢ilxp.xz). (15)

where x|, = x, x, = 1, x,; = : are the rectangular Cartesian coordinates. Throughout this
section. repeated indices imply the summation convention of Einstein. Greek indices take
values in the range (1. 2). and ¢, is the normal displacement of the plate and ¢, are the
rotations of the normals about x,-axes. The bending and twisting moments can be expressed
in terms of ¢, as

I—v 2v .
1"[1{! = D T (bx.l+¢(!.x+ T 7‘\: (b’,'.‘,‘()xﬁ . (16)

2 |-

where D = duh/{3(1 —v)} is the flexural rigidjty of the plate, u is the shear modulus of
clasticity and v is the Poisson’s ratio. The shear forces Q, and Q, per unit length of the plate
are given by

Q. = K ph(dia+b,). (17)

where the shear coetlicient v° assumes the value 72/12.
Making use of egns (16) and (17), the three equations of motion become

: [(r- ")‘/’x./m + (1 + V)‘/’/t./u] — (., +hs.) =0,

Tt:l‘[‘/’]./:/:'f'(b/:./f] +128,J, = 0. (18)
The transverse shear effect is associated with § = 6D/ uh. For a traction-free crack, the

quantities M,, and @, must each vanish for|x| < @ and v = 0. Henee the mixed boundary
conditions may be expressed as follows

My,=0, @,=0 (yr=0. 0<xyx<a), (19)
Miy=0, ¢, =0, ;=0 (=0, a<x<x), (20)
$d,=0, ;=0 (y=1, 0<x<x). (21)

A Fouricr transform is applied to eqns (18) and the solutions in a rectangular Cartesian
coordinate system (x, 1, 2) are

‘) 1,
$. = ; j [sS[={C (s} + Co(s)(28s + )} exp (sy)
+{=Ci()+ Ci(5)(2Ss =)} exp (=s17)]

+44(s)(h/m) (B, (s) exp {A(s)y} — Ba(s) exp | — A(s)y}]] cos (sx) ds

+2 O’th ‘ ( 1S 88-2 2 4S5y 2 ,
\ap /], [(—2S—8S 5" +4Ssy—y ) exp(—sy)
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—(2S+8S5°5* +4Ssy+ ) exp { =52 —y)}
+5H,(5)(28s —v) exp (—sy)
—sH.(s)(2Ss+v)exp (sy)
+2sH,(s) sinh (sv)
+24(s)H,(s) sinh {A(s)v}]4,(s) cos (sx) ds,

¢, = Jt [{=5C\(s) = C1(s)(1 + 2557 +5v)} exp (s)
0

Al

+{sC3(5) = C4(s)(1 + 2857 —s3) } exp (—s¥)
+4s(h/n) (B, (s) exp {A(5)y} + By(s) exp{— A(s)y}]] sin (sx) ds

2 (ohB,) (= ., . ) ) |
il bt 23 ¢ 1 21 2 — v
+n( D )J; [{6Ss+8Ss'—2(1 +285°) y+ sy }sexp( sy)

. 2 0l
—{6Ss+8S°s' +2(1 +2S5%) vy + 5%} Sexp { =521}

— H,(s)(1 +2Ss* —sy) exp (—s¥)

~ H(5)(1 + 2S5 +sv) exp (s3)

+ 25 ,(s) cosh (sy)

+ 2511 ,(s) cosh {A($)y}]A () sin (sx) ds,

. = 72: J | HCH) + Co) ) exp ()

+1C1(5) + Ca(s)p} exp (= s1)] sin (sx) d
) f [’ [exp (= 5) +exp { =2 = )}]
+3{Hu(s) exp (—=sp) + H, () exp (s) }

—2H ,(s) sinh (xy)]A 1 () sin (sx) ds, (22)

where B\ (s), By(s) and C(s), Ci(s), Ci(s), C,(s) are the unknowns to be solved, and Ai(s)
and H,(s). H,(s), H(s), H/s) are given in Appendix A.
Making use of the boundary conditions (19)-(21) renders

s{C () +Ci(9)} +2<IITV +S.\‘1>{C_s(s) - C,(5)}

—A(5)Qh/m)* (B, (s) = B:(s)} =0,
—s{exp (sHC (s) +exp (=s1)Cy ()}
— (sl + 255 exp (51)C+(s) + (— 51+ 2Ss5%) exp (—s1) C4(s)
+ A(5)(2h/m) [exp {A(s) } B\ (s) —exp { — A(s)!} By (s)] = O,
—5{exp (s)C,(s) —exp (—s/)C:(9)}
— (L +5/4285*) exp (s/)Ca(s) — (1 = sl +285*) exp (= 51) C4(s)
+5(2h/m) (B (s) exp [A(s)} + By(s) exp { —A(s){}] = 0,
exp (s1)C, (5) +exp (—s)C(s) +1{exp (s)C.(s) +exp (=s{)Cys(s)} =0, (23)
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* )
f ['{5+f| (9D (s)+ 'l-:“v i :(S)D:(S):l sin (sx) ds
. —

ochB, - .
= 4S<—)J Fi(s)A,(s)sin(sx)ds (0 € x <a),

4D ] )
J . Di(s)sin(sx)ds =0 (¢« <x<x), (24
0

< 3
J l:f:. (5)D () + l_:— (1 4v)s +f;:(s)}D:(s)] cos (sx) ds

Vl

= <?£'g-‘l> 4[] Fi(s)4,(s)cos (sx)ds (0 € x < a),

j Di(s)cos (sx)ds =0 (¢ < v < >). (25

Equations (24) and (25) arc the simultancous dual integral equations and the functions
L) (L =1.2) and F(s) (I =1, 2) are given in Appendix B. The unknowns D, (s) and
Do(x) are related Cs) (i = 1 4) as follows :

D) =C(9)+ Ci(s),
Dy(s) = Cy(s) = Cy(s). (26)

In order to solve the simultincous dual integral equations (24), (25), we introduce the
representations

D\(s) ”S("B"J‘) ‘Jl"”u// (W (sad)y dE

=85\ —— Ju g sag) dg,

t 3 aD X < 1{(G) (Sug) dg
n{hB,J. b, . o\ s

Dy =, ( 4‘,')-'«)«‘ J $" () o sud) A2, €3)
- [¢]

where J,( ) is the first-order Bessel function of the first kind. The second equations of (24)
and (25) are satisfied identically by the integral representations (27). If we now substitute
eqns (27) into the first cquations of (24) and (25), after some manipulations, we have the
following simultancous Fredholm integral equations of the sccond kind :

1 i
'%(@'*J '/II(”)I\’II(S:"’)d',+J-) ‘[’:('I)Kl:(s:»’l)d'l=J‘ MOK,(E.0) dS.
t] ( 0

I | ]
J '/ln('l)/\'zn(i"l)d'l+'//:(§)+f Y:0DK2(S ) dy =J MK Dde. (28)
0 0 0

The kernels K, (&, ) (i = 1, 2; j = 1-3) take the forms:
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Koim=m' :j‘ S (e () de,

Ki:(Gn) = (3n)! ("—;‘)J (00 o) d.
- o

l s 2

K. (Gom = lT",(‘:'I)l ( l)j S )t () de,

KRGy = — (‘J})‘ f‘h(ﬂjﬂ t3)Jo(o) de, (29)
- 1 F(I)

ey o grEnyll AN
[\!}(S-Q) = 4(5&) J; l+e'(p(—"tl/ ;({s}-/()(&)dx‘
C. =y .| Fu(n
W) = — - (& 9 @ 3
K::(3.0) S0 )(s <) .L l+exp(—-"t1/()J (£$) (20 dr, (30

where £1,(0). £1a(0). f2.(0. [0 and F,(0). F,(1) are given in Appendix C.

The singular parts of the moments and shear forees in the neighborhood of the crack
tip can be determined from the asymptotic solution expressed in terms of a set of polar
coordinates v, and ¢,. The final results are

M, . —Isin(0,/2) = Lsin (50,/2)
M,, ~(,r;,_. — Lsin(0,/2)+ Lsin(50,/2) | . (3H
M., - 1cos (0,/2) + Lcos (50,/2)
0. ky [ =sin@/n -
017 @0l cos@ ] (32)

The twisting moment intensity factor &, and the shear foree intensity factor &, may be
defined as

k,= l}m' [2(x =) ML (x,0))

21+ v)(hByJa* (1), (33)

ky= hm [2x—a)} ' 70, (x.0)]

At

1l

—2(hBy L) (1), (34)

NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the twisting moment intensity factor &y and the shear foree intensity
factor &, it is necessary first to numerically solve the Fredholm integral equation (11) for
A{n) and the simultancous Fredholm integral equations (28) for ¢, (n). ¥.(m). Figure 2
exhibits the variation of the normalized twisting moment intensity factor k ./ ByJ,a” * against
the {/a ratio. The Poisson's ratio v is taken to be v = 0.3. k»/ByJoa” * increascs more rapidly
with the //a ratio when the Aifa ratio is increased. The effect of the Poisson’s riatio v on the
twisting moment intensity factor is shown in Fig. 3 for i/a = 0.5. A smaller value of v tends
to increasc k o/ ByJya”* for a given {/a.

Figure 4 shows a plot of the normalized shear force intensity factor k4/ByJoa®* in eqn
(34) versus the [a ratio for v = 0.3 and Aja = 0.25, 0.50, 0.75. It is seen that the &; values
increase at first reaching a maximum with the //a ratio. and approach the values for l/a = ».
SAS 29:23-0
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Fig. 2. Twisting moment intensity factor &,/ ByJya ™ * versus l/a for h/a = 0.25, 0.50 and 0.75.

Decreasing plate thickness #1/a teads to lower the &, value. As the ratio #/a — o0 and the
ratio //a - =, k, tends to the solution

hy = 2T gV (35)

The stress intensity factor of an infinite medium with a finite crack under clectromagnetic
antiplane shear load is given by (8,J,/4)a"? (Shindo and Takeuchi, 1988). The shear foree
Q. per unit length of the plate is defined, in terms of the stress component, as

h
Q. = J 0,.dz. (36)
~h

Making use of eqn (36), the stress intensity factor (B,J,/4)a** may be converted to the
following shear force intensity factor:

0.20

h/a=05 "‘0*

015 =]

s
]

Ny
/ 0.50
///

ki/Bka''?

\

/

0.05 %

Qo 5.0 100 15.0 200
I/a

Fig. 3. Effect of Poisson’s ratio v on twisting moment intensity factor k,/B,Joa"* for hja = 0.5.
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Fig. 4. Shear force intensity factor k,/B,Jqa"? versus {/a for h/a = 0.25, 0.50 and 0.75.

ky = f szna""zd: = ’%’i’a-‘”. 37

~h

which agrees with eqn (35).

In conclusion, the electromagneto-clastic analysis of a conducting plate of finite width
with a through crack under a current flow and a magnetic ficld has been shown in this study.
The results are expressed in terms of the twisting moment intensity factor and the shear
force intensity factor. It is found that the twisting moment intensity factor increases with
the plate-width to the crack length ratio /e, depending on the perturbation of the electric
current field, the plate-thickness to the crack length ratio #/a and the Poisson's ratio v. The
shear force intensity factor is also given as a function of the ratio //« for different ratios of
hfa and v = 0.3, and the results depend on the perturbation of the electric current field. The
larger values of the parameters A/a and //a will give the worst scenario for design purposes.

Acknowledgement—This work was supported in part by the Scientific Reseurch Fund of the Ministry of Education
for the fiscal year 1990,

REFERENCES

Embley, G. T. and Sih, G. C. (1973). Sudden appearance of a crack in a bent plate. /nt. J. Solids Structures 9,
1349-1359.

Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. ASME
J. Appl. Mech. 18, 31-38.

Murakami, Y. (1986). Stress Intensity Fuctors Handbook, Vols 1, 2. Pergamon Press, Oxford.

Shindo, Y. and Takeuchi, A. (1988). Singular stresses of a finite crack in an elastic conducting strip under
clectromagnetic force. Fusion Engng Design 6, 199-205.

Sneddon, 1. N. (1951). Fourier Transforms. McGraw-Hill, New York.

APPENDIX A

A(s) = {s*+(r/20)7} 2, (Al)

o) = =1 e = 1L
e T T

sinh {A(s){}
sinh (s/)

|
2y,

H,(s) = [l(.r)!l,(,v) +2(Y, +4 Y,’s’)]

H(s) = H,.(.v)—(é +4 Y,>{l +exp(=2-s0)},

—exp(—2si)’

H(5) = I[{H,.(s)-—(;l—_. +4Y,>}{l +exp(—2s)} + %’exp(—lrl):l 0 l
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2 {
= exp | Asif! 1 - - Al
H,u(s) = exp o) + {exp‘/(s) cxp(s/)l{mh{\” ~{2Y5° Hcosh(s[)f gt (AY)
The quantity Y, stands for
i (A4
N n:uh‘ )
APPENDIX B
. Y s 27 ] expl =240}
Hisr = = 5 ) e e — *‘*—ELT*TT“‘;
2] Ay ALY) + 5} A L —exp — 240}
45571 G (9 i stanh(shiexplis— A5}
+ 'T[G‘U ‘_“p('"‘”’“‘][uup(—zxn" T—exp |~} |

. Y 5 . exp{—2sh)
S — —1 I Qe o
ity = (2h) AV AlS) +5}7 +a ‘)[-Ss I +expt—2sf)

¥ 2 exp | — 2400 .

3 JURDREN, [N, S S R —_ ‘v
4-/(‘)( Ss* 4 I—‘>l—ur', TeTh + 21 —v)Ss

sexpliv—Alsid] | G sy Imh(xi)
e e anh(s) -1} + -
J([,«(x)[l-—g.xp‘ =240} danh () =1 + G I

\up['\—/(\)'ll . o

x[i - A —exp ! — A(\):’ i tt—cxp{ — ..\i),»» .

n ! ¥ ('|(\)
Jals) = (21’) ,(\)*:/(\):\‘:: ~ds- {(“h) l}

s } exp{ =24} .

“ LR R e B
2] “’{,u Cexp (=2l T I R exp (= 240))

Giis) | e st
L( (s !—-u(p(—-..w’)i-«lJ['-A.\ R Als) explls— Al Svtanh (s |

2 [ )
_/;,(.\')2(n) e '+’H—~)\(’s\+n exp(~24)

A(s)} A(\H— (L I+¢ xp( 250}
SR [ CERR Matonel i
+285 ff?g_’,‘:%:}; {unh(\!)—t'}w —-¥) ~£—§ [1»-{(2&4 1y tanh {sf) — s}
285 L)) 7] (\);l‘i[::;f_(_"’,’(';mlx—up( s-l)}lunh(,vl)]. (B1)
G o) = o111 ~tanh(s!)} - 255 ~ 1 +2S¥ ’(-\)’;’;:‘,‘2\,,,—%[: — !’(\)/,]up["(‘)-k‘}il.

i 2 {
Tos) =~ sy sf- 2800 O — i{x) — s,
Gasy = {1 tmh(sih[s! Sy /'.(,\')t;mh{i(s)l}] ( S+ I_‘)[i tmh'/(s) J (\)cxP{ Ay —sH]

Go(s) = sl T4exp (= 2sh)] —tanh (/) [T ~exp (= 25/) ]

s tunh {s/}
P — 2 *[ pAYS =28 e L I ke
tl—exp(=2sly}) 255° #1285 A5y tanh Liga (82)

Fis) = 4541 —exp (=25l + 20
™ ) r - Eu(‘)

Fas) = 81 E(ﬁ+ il exp { —2sf) 2!1 exp { — 2s1)} (B}
MEIVE G T T ap (m2an | SPITS m p mep = sl -
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E(5) = a1 —-exp(«-2/'.(5)1}]E,,,(A'H-ZS\""‘[I +exp |~ A —exp (= 2D},

. st st .
Els) = i)l —exp ! —:;.(.:)1:1{(;"1; - 1}{‘“‘; o ! —ZS\"}.

st
e £1 el
Eis) = .51{‘ aheh) }{s‘! exp (—2sfy)

—i{sYexp[{A(s)=sH{ —exp | =24 NJexp [~ Is+ 4t} 1], (BYH

_Jikexp (=2l - RNy Y §
E'“m_ﬂ{ anh G~ Tew (=0 =285 + D +exp(=2sH)]. (83)

APPENDIX C

v fra ; t 20 1 expi=2i0lw 45,71 G,(1) I
Sl = (2/,) in(l){i..(l)+r}+{iu(l)}l—cxp{—2)..,(1)(!'(;)}+(I/u) G oW

{ ttanh (tWa)y exp{le— Ao} Hu]
1 +exp(—2dia) AoV —exp (2an(Dija})

) _(ma : t . exp(=2tiw)
~"*“)“(2h) L En +”""[ S v exp (= 2lia)
t 2 exp | = 24.(0a}
+ Au( j<-s'll + [ o . )l —_\‘b’. 1:‘"“” ll,]

e icxp[}t-ig.(l)‘a’jul G.n l.mh{f!’u)
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